Massless particles with continuous spin indices

L. F. Abbott

Department of Physics, Brandeis University, Waltham, Massachusetts 02154
(Received 8 September 1975)

Massless representations of the Poincaré group include states with continuous spin indices. Free field operators corresponding to these states are constructed and are shown to obey noncausal commutation or anticommutation relations.

To construct massless representations of the Poincaré group we first form standard states with the momentum

\[k = \kappa \hat{z} \]

and energy

\[\omega = \kappa, \]

which transform according to a representation of the little group formed from elements of the Lorentz group which leave this standard momentum invariant. Letting \(J_\hat{z} \) be the rotation generators and \(\hat{K} \) the boost generators, the generators of the little group are \(J_{\hat{z}}, J_1, \) and \(L_2 \) with

\[
\begin{align*}
L_1 &= K_1 - J_2, \quad (1a) \\
L_2 &= K_2 + J_1, \quad (1b)
\end{align*}
\]

which satisfy

\[
\begin{align*}
[J_1, K_2] &= 0, \quad (2a) \\
[J_2, L_1] &= iL_3, \quad (2b) \\
[J_2, L_2] &= -iL_1. \quad (2c)
\end{align*}
\]

The standard states are characterized by a fixed parameter \(l \) and a variable angle \(\phi \) with

\[
\begin{align*}
L_1(\kappa \hat{z}, l, \phi) &= l \cos \phi |\kappa \hat{z}, l, \phi\rangle, \quad (3a) \\
L_2(\kappa \hat{z}, l, \phi) &= l \sin \phi |\kappa \hat{z}, l, \phi\rangle, \quad (3b) \\
e^{-i\phi J_2} |\kappa \hat{z}, l, \phi\rangle &= |\kappa \hat{z}, l, \phi + \theta\rangle. \quad (3c)
\end{align*}
\]

Since any representation of the Poincaré group can be made either single-valued or double-valued we take for \(n = 1 \) or 2

\[
|\kappa \hat{z}, l, \phi + 2\pi n\rangle = |\kappa \hat{z}, l, \phi\rangle. \quad (4)
\]

In the limit \(l \to 0 \) states with different values of \(\phi \) become degenerate up to a phase,

\[
|\kappa \hat{z}, 0, \phi + \theta\rangle = e^{-i \lambda \phi} |\kappa \hat{z}, 0, \phi\rangle,
\]

and according to Eq. (4), \(\lambda \) must be an integer or half-integer. It is of course the usual helicity quantum number.

States with momentum \(\kappa \) characterized by azimuthal angle \(\alpha \) and polar angle \(\beta \) and a parameter

\[
\gamma = \ln \left(\frac{|\kappa|}{k} \right)
\]

are obtained from the standard states by appropriate Lorentz transformation. Using ordinary \(\delta \)-function normalization,

\[
|\kappa, l, \phi\rangle = \left(\frac{k}{|\kappa|} \right)^{1/2} e^{-i\alpha J_2} e^{-i\beta J_3} e^{-i\gamma \kappa \hat{z}} |\kappa \hat{z}, l, \phi\rangle. \quad (5)
\]

Because of the continuous variation of the angle \(\phi \), massless particles with \(l \neq 0 \) cannot be created or destroyed by any field operator \(\Phi(x^\mu, \theta_\alpha) \) with a finite number of components. Instead we introduce a field \(\Phi(x^\mu, \theta_\alpha) \) depending on a set of continuous variables \(\theta_\alpha \). Under an arbitrary Lorentz transformation \(U(\Lambda) \),

\[
U(\Lambda) \Phi(x^\mu, \theta_\alpha) U^{-1}(\Lambda) = \Phi(\Lambda^{-1} x^\nu, \Gamma_{mn}(\Lambda^{-1}) \theta_\alpha), \quad (6)
\]

where a sum over repeated indices is assumed throughout. The reason for this particular transformation law will be given below. The matrices \(\Gamma_{mn} \) form a representation of the Lorentz group since

\[
\Gamma_{mn}(\Lambda_{\alpha}^{-1}) \Gamma_{\alpha\beta}(\Lambda_{\beta}^{-1}) = \Gamma_{mn}(\Lambda_{\beta}^{-1} \Lambda_{\alpha}^{-1})^{-1} = \Gamma_{mn}(\Lambda_{\alpha}^{-1} \Lambda_{\beta}^{-1}). \quad (7)
\]

If the \(\theta_\alpha \) transform according to a representation of the Lorentz group designated by \((A, B) \), the rotation and boost generators for the \(\Gamma_{mn} \) are given by

\[
\text{2291}
\]
\[\mathbf{\tilde{f}} = \mathbf{\tilde{f}}^{(A)} + \mathbf{\tilde{f}}^{(B)}, \quad \mathbf{\tilde{x}} = -i(\mathbf{\tilde{f}}^{(A)} - \mathbf{\tilde{f}}^{(B)}) , \]

where the \(\mathbf{\tilde{f}}^{(A)} \) and \(\mathbf{\tilde{f}}^{(B)} \) can be written simply in terms of ordinary spin matrices for the spins \(A \) and \(B \). Recalling Eqs. (1), the matrix generators corresponding to the \(L_1 \) and \(L_2 \) operators are

\[
\begin{align*}
L_1 &= \mathbf{\tilde{a}}_1 - \mathbf{\tilde{a}}_2 = -i(\mathbf{\tilde{g}}^{(A)} - \mathbf{\tilde{g}}^{(B)}), \\
L_2 &= \mathbf{\tilde{b}}_1 + \mathbf{\tilde{b}}_2 = (\mathbf{\tilde{g}}^{(A)} + \mathbf{\tilde{g}}^{(B)}),
\end{align*}
\]

where as usual

\(\mathbf{\tilde{a}}_i = \mathbf{\tilde{b}}_i \pm i \mathbf{\tilde{c}}_i \).

We take \(\Phi(x, \theta_\alpha) \) to be a free field operator creating or destroying only single particles. The one-particle matrix elements can be written as

\[
\langle 0 | \Phi(x, \theta_\alpha) | \mathbf{\tilde{x}}, I, \phi \rangle = \frac{1}{(2\pi)^{3/2}} \frac{e^{-i\mathbf{\tilde{x}} \cdot \phi}}{(\mathbf{\tilde{x}}) \sqrt{2}} \times F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha).
\]

These are related to the standard state matrix elements by a Lorentz transformation

\[
U(\Lambda(\mathbf{\tilde{k}})) = e^{-i\gamma_0 \mathbf{\tilde{a}}_0 \cdot \mathbf{\tilde{b}}_0 e^{-i\gamma_3 }}.
\]

Thus from Eq. (5)

\[
\langle 0 | \Phi(x, \theta_\alpha) | \mathbf{\tilde{x}}, I, \phi \rangle = \left(\frac{K}{|\mathbf{\tilde{k}}|} \right)^{1/2} \langle 0 | U^{-1}(\Lambda(\mathbf{\tilde{k}})) \Phi(x, \theta_\alpha) U(\Lambda(\mathbf{\tilde{k}})) | \mathbf{\tilde{x}}, I, \phi \rangle.
\]

Then using (5), (6), and (8)

\[
F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha) = F(\mathbf{\tilde{k}}, I, \phi; \Gamma_{m\alpha}(\Lambda(\mathbf{\tilde{k}})) \theta_\alpha),
\]

with

\[
\Gamma_{m\alpha}(\Lambda(\mathbf{\tilde{k}})) = (e^{-i\alpha_0 \mathbf{\tilde{a}}_0 \cdot \mathbf{\tilde{b}}_0 e^{-i\gamma_3 }})_{m\alpha}.
\]

The function \(F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha) \) can be obtained by considering Eqs. (3a) and (3b) and writing for infinitesimal \(\epsilon_1 \) and \(\epsilon_2 \)

\[
\langle 0 | (1 - i \epsilon_1 L_1 - i \epsilon_2 L_2) \Phi(x, \theta_\alpha)(1 + i \epsilon_1 L_1 + i \epsilon_2 L_2) | \mathbf{\tilde{x}}, I, \phi \rangle = (1 + i \epsilon_1 L \cos \phi + i \epsilon_2 L \sin \phi) \langle 0 | \Phi(x, \theta_\alpha) | \mathbf{\tilde{x}}, I, \phi \rangle.
\]

Using (6) and (8) this gives

\[
\begin{align*}
\left\{ L_1 \right\}_{m\alpha} \theta_\alpha &= \frac{\partial}{\partial \theta_\alpha} - i \cos \phi \right) F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha) = 0, \\
\left\{ L_2 \right\}_{m\alpha} \theta_\alpha &= \frac{\partial}{\partial \theta_\alpha} - i \sin \phi \right) F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha) = 0,
\end{align*}
\]

or from the explicit forms of Eqs. (7) after adding and subtracting

\[
\begin{align*}
\left\{ [\mathbf{\tilde{g}}^{(A)}] \right\}_{m\alpha} \theta_\alpha &= \frac{\partial}{\partial \theta_\alpha} - \frac{1}{2} i e^{-i\phi} \right) F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha) = 0, \\
\left\{ [\mathbf{\tilde{g}}^{(B)}] \right\}_{m\alpha} \theta_\alpha &= \frac{\partial}{\partial \theta_\alpha} + \frac{1}{2} i e^{i\phi} \right) F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha) = 0.
\end{align*}
\]

These equations cannot be solved for \(I \neq 0 \) if either \(A \) or \(B \) is zero. This rules out scalar or two-component spinor transformation laws for the \(\theta_\alpha \). However, if \(\theta_3 \) is a four-component spinor

\[
\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{pmatrix},
\]

the equations read

\[
\left(\begin{array}{cccc}
\frac{\partial}{\partial \theta_1} & 0 & 0 & 0 \\
0 & \frac{\partial}{\partial \theta_2} & 0 & 0 \\
0 & 0 & \frac{\partial}{\partial \theta_3} & 0 \\
0 & 0 & 0 & \frac{\partial}{\partial \theta_4}
\end{array} \right) F(\mathbf{\tilde{k}}, I, \phi; \theta_\alpha) = 0.
\]

with

\[
\lambda = (q - \rho)/2.
\]

This serves to reproduce the conventional \(I = 0 \) helicity state "wave functions" of familiar massless field theory, multiplied by factors of \(\theta \). As a simple example, we consider

\[
f(\theta_2, \theta_3) = \delta_{\theta_2} \delta_{\theta_3} 1_{\theta_\alpha}.
\]
Then, performing a Lorentz transformation as in Eq. (9),

\[F(\vec{k}, 0, \phi, \theta) = \delta_{n} s_{m} \pi_{m} (\Lambda(\vec{k})) s_{m} \]

\[= u_{m}(k) h_{m}, \]

where \(u_{m}(k) \) is just the usual \(-\frac{1}{2}\) helicity spinor. This explains the form taken in Eq. (6) and indicates the connection between \(l = 0 \) and \(l \neq 0 \) cases. The properties peculiar to continuous-spin states are entirely contained in the exponential factor of Eq. (10). In fact, we can eliminate the extra factors of \(\phi \) in \(f(\theta_{1}, \theta_{2}) \) by introducing the multicomponent field \(\Phi_{a}(x, \theta) \) and writing

\[\langle 0 | \Phi_{a}(x, \theta) | \vec{k}, l, \phi \rangle = \frac{1}{(2\pi)^{3}} \frac{\epsilon^{\nu \kappa \lambda} x_{\nu}}{(2 \vec{k})^{3/2}} \]

\[\times u_{a}(k) g(\vec{k}, l, \phi, \theta), \]

(11)

where \(u_{a}(k) \) is the conventional "wave function" corresponding to the particular helicity state obtained from the continuous-spin states in the \(l = 0 \) limit. The function \(g(\vec{k}, l, \phi, \theta) \) is just the exponential term in (10) Lorentz-transformed according to Eq. (9). Explicitly,

\[g(\vec{k}, l, \phi, \theta) = \exp \left\{ \frac{i}{2} \left[(G_{1}(\vec{k}, \theta) e^{i(\alpha + \phi)} + G_{2}(\vec{k}, \theta) e^{-i(\alpha + \phi)}) \right] \right\}, \]

(12a)

where

\[\langle 0 | \Phi_{a}(x, \theta) | \Phi_{a}^{*}(x', \theta') \rangle \rangle = \frac{1}{(2\pi)^{3}} \int d^{3}k \int \frac{d^{3}k}{2|k|} \left[e^{ik \cdot x} u_{a}(k) u_{a}^{*}(k) g(\vec{k}, l, \phi, \theta) g^{*}(\vec{k}, l, \phi, \theta') \right] \]

\[\times \left[e^{-ik \cdot x} v_{a}(k) v_{a}^{*}(k) g(\vec{k}, l, \phi, \theta) g^{*}(\vec{k}, l, \phi, \theta') \right] \].

The factor \(u_{a}(k) u_{a}^{*}(k) \) is a polynomial in the four-vector \(k \) and satisfies3

\[u_{a}(k) u_{a}^{*}(k) = (-1)^{\lambda} v_{a}(k) v_{a}^{*}(k). \]

Then causality in the \(l = 0 \) limit gives us the usual spin and statistics relationship and requires that

\[\langle 0 | \Phi_{a}(x, \theta) | \Phi_{a}^{*}(x', \theta') \rangle \rangle = u_{a}(r_{2}) u_{a}^{*}(r_{2}) \frac{1}{(2\pi)^{3}} \int \frac{d^{3}k}{2|k|} \left[(e^{ik \cdot x} - e^{-ik \cdot x}) C(\vec{k}, l, \theta, \theta') \right], \]

(14)

with

\[C(\vec{k}, l, \theta, \theta') = \int d^{3}g(\vec{k}, l, \phi, \theta) g^{*}(\vec{k}, l, \phi, \theta'). \]

Using Eqs. (12) we can evaluate the continuous-spin integral to find, after eliminating an irrelevant constant,

\[C(\vec{k}, l, \theta, \theta') = \sum_{n=0}^{\infty} \left\{ \left(\frac{1}{2} \right)^{n} \frac{1}{n!} \right\}^{2} \left[(G_{1}(\vec{k}, \theta) - G_{1}^{*}(\vec{k}, \theta')) [G_{2}(\vec{k}, \theta) - G_{2}^{*}(\vec{k}, \theta')] \right]^{n}. \]

(15)

For example, in the special case

\[
\theta = \theta' = \frac{1}{\sqrt{2}}
\]

\[
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
\]
we have
\[C(\tilde{k}, l; \theta, \theta') = \sum_{\eta = 0}^{\infty} \left[(\frac{1}{2i})^\eta \frac{1}{\eta!} \right]^2 \left[\left(\frac{4|\tilde{k}|}{k} \right) - k \right] \left(\frac{1}{k} + k \right) \cos^\eta \left(\frac{k}{k} \right), \]

\[C(\tilde{k}, l; \theta, \theta') \] is clearly not in general a polynomial of finite order in \(k \), nor is it symmetric,

\[C(\tilde{k}, l; \theta, \theta') \neq C(-\tilde{k}, l; \theta, \theta'). \]

In order for our field theory of massless particles with continuous spin indices to be causal, the integral in Eq. (14) must vanish at equal times, \(x_0 = x_0' \). Changing a \(\tilde{k} \) to \(-\tilde{k} \) the integral in question is

\[\int \frac{d^3k}{2|\tilde{k}|} e^{-i(\tilde{k} \cdot \tilde{x} - \tilde{k} \cdot \tilde{x}')} [C(\tilde{k}, l; \theta, \theta') - C(-\tilde{k}, l; \theta, \theta')], \]

which must vanish for all \(\tilde{x}' - \tilde{x} \neq 0 \). This requires that the factor multiplying the exponential in the integrand be a polynomial of finite order in \(k \). From Eq. (15) we see that this would be possible only if \(C(\tilde{k}, l; \theta, \theta') \) were symmetric in \(k \).

Since this is not the case, the field commutator or anticommutator does not vanish at equal times except in the familiar case \(l = 0 \). Thus we have concluded a field-theoretic argument against the existence of massless particles with continuous spin indices in nature.

I am grateful to Professor Steven Weinberg for suggesting and encouraging work on this problem. I also thank Professor Hugh Pendleton for several helpful discussions.

*Research supported by a Charles Smith Fellowship and by E. R. D. A. under Contract No. E(11-1)3230.

